Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Campbell, Barbara J. (Ed.)ABSTRACT Host-associated microbiomes can be critical for the health and proper development of animals and plants. The answers to many fundamental questions regarding the modes of acquisition and microevolution of microbiome communities remain to be established. Deciphering strain-level dynamics is essential to fully understand how microbial communities evolve, but the forces shaping the strain-level dynamics of microbial communities remain largely unexplored, mostly because of methodological issues and cost. Here, we used targeted strain-level deep sequencing to uncover the strain dynamics within a host-associated microbial community using the honey bee gut microbiome as a model system. Our results revealed that amplicon sequencing of conserved protein-coding gene regions using species-specific primers is a cost-effective and accurate method for exploring strain-level diversity. In fact, using this method we were able to confirm strain-level results that have been obtained from whole-genome shotgun sequencing of the honey bee gut microbiome but with a much higher resolution. Importantly, our deep sequencing approach allowed us to explore the impact of low-frequency strains (i.e., cryptic strains) on microbiome dynamics. Results show that cryptic strain diversity is not responsible for the observed variations in microbiome composition across bees. Altogether, the findings revealed new fundamental insights regarding strain dynamics of host-associated microbiomes. IMPORTANCE The factors driving fine-scale composition and dynamics of gut microbial communities are poorly understood. In this study, we used metagenomic amplicon deep sequencing to decipher the strain dynamics of two key members of the honey bee gut microbiome. Using this high-throughput and cost-effective approach, we were able to confirm results from previous large-scale whole-genome shotgun (WGS) metagenomic sequencing studies while also gaining additional insights into the community dynamics of two core members of the honey bee gut microbiome. Moreover, we were able to show that cryptic strains are not responsible for the observed variations in microbiome composition across bees.more » « less
-
Ouangraoua, Aida (Ed.)Abstract The core genome represents the set of genes shared by all, or nearly all, strains of a given population or species of prokaryotes. Inferring the core genome is integral to many genomic analyses, however, most methods rely on the comparison of all the pairs of genomes; a step that is becoming increasingly difficult given the massive accumulation of genomic data. Here, we present CoreCruncher; a program that robustly and rapidly constructs core genomes across hundreds or thousands of genomes. CoreCruncher does not compute all pairwise genome comparisons and uses a heuristic based on the distributions of identity scores to classify sequences as orthologs or paralogs/xenologs. Although it is much faster than current methods, our results indicate that our approach is more conservative than other tools and less sensitive to the presence of paralogs and xenologs. CoreCruncher is freely available from: https://github.com/lbobay/CoreCruncher. CoreCruncher is written in Python 3.7 and can also run on Python 2.7 without modification. It requires the python library Numpy and either Usearch or Blast. Certain options require the programs muscle or mafft.more » « less
An official website of the United States government
